

PRESENTACIÓN DE PROPUESTAS

1. TÍTULO DEL CURSO

Datos e innovación política	

2. DOCENTE A CARGO Y EQUIPO DOCENTE

APELLIDO Y NOMBRE	
Carrasco, Lisandro	
Silva, Facundo	

3. JUSTIFICACIÓN - FUNDAMENTACIÓN

La creciente demanda laboral de nuevas habilidades técnicas, así como la cada vez más notoria necesidad de escalar las capacidades análiticas en la investigación social a través de las nuevas herramientas de datos, hacen que cientistas sociales se encuentren cada vez más necesitados de contar con una base de conocimiento de lenguajes de programación como Python o R, de bases de datos (SQL o NoSQL) y de presentación (tales como Looker, PowerBI, etc).

4. OBJETIVOS

Introducir a la programación en Python para el análisis de datos, el armado de tableros en Looker y presentar casos de éxitos y desafíos en la innovación asociados directamente a la impronta organizacional estatal argentina en sus distintos niveles de gobierno.

5. PROGRAMA A DESARROLLAR

- 1. Introducción. Motivación, estado del arte en la política pública y electoral, conceptos generales data y big data, análisis o ciencia de datos, programación, ML, IA y chatbots.
- Python. Google Colab como herramienta de desarrollo accesible con Python, configuración de ambiente con archivos y carpetas, primeros pasos de ejecución de un script, instalación e importación de librerías. Formato markdown.
- 3. Python. Introducción a pandas. Importación de datos, filtrado, visualización, primer análisis descriptivo y gráfico con matplotlib.
- 4. Python. Trabajo sobre un dataframe. Corrección de datos erróneos, imputación o eliminación de valores nulos en el dataset analizado en la clase anterior.
- 5. Bases de datos. Conceptos: la diferencia entre Excel y una base de datos. Breve descripción de qué es SQL y NoSQL, comandos básicos y exposición de cómo se ve una verdadera BD. Envío de los datos trabajados durante las clases 3 y 4 a Google Sheet para utilización en tableros.
- 6. Tableros. Descripción de lo que implica un tablero de gestión, su utilidad en el análisis y la toma de decisiones. Introducción a la visualización de datos y Google Locker Studio. Conexión de datos y creación de primer reporte.
- 7. Tableros. Creación, diseño y configuración de gráficos. Creación de filtros y datos combinados. Compartir y crear plantillas. Publicación de reporte. Creación de fórmulas, funciones y expresiones regulares.
- 8. Datos e innovación en las ciudades. Introducción al uso de datos para la gestión local y referencias europeas y latinoamericanas en el uso de datos para la transformación urbana. Casos de éxito: los municipios que innovan con datos e IA.
- 9. Datos e innovación en el tercer sector. Cómo las asociaciones de la sociedad civil impulsan la agenda de datos abiertos e innovación. La experiencia de RIL (Red de Innovación Local), su mapeo de soluciones locales y la herramienta de tableros de gestión de datos adaptados a cada ciudad.
- 10. Sector público nacional. Importancia y desafíos en la gestión de los datos para la política pública: recolectarlos, administrarlos y usarlos para entender más y mejor a la población. ¿Cómo puede concretarse una estrategia de datos? Reconocimiento de datos como un activo.
- 11. Campañas electorales. Cómo las campañas electorales utilizan múltiples fuentes de datos para evaluar sus situaciones y alimentar sus estrategias. La brecha entre las campañas estadounidenses y europeas con los recursos argentinos. ¿Qué tan real y útil es el big data en estos contextos? El dilema de predecir vs. entender.

6. BIBLIOGRAFÍA

- "Python for Data Analysis" Wes McKinney
- "Automate the Boring Stuff with Python, 2nd Edition: Practical Programming for Total Beginners" Al Sweigart
- "El Libro de Python" Disponible en ellibrodepython.com

7. MODALIDAD DE DICTADO

PRESENCIAL	PRESENCIAL VIRTUAL	
		Х

8. MODALIDAD DE EVALUACIÓN

Futures de toobres final		
Entrega de trabajo final		

9. DURACIÓN

CARGA HORARIA		
CARGA HORARIA TOTAL		
22 horas		
CANTIDAD DE CLASES TOTALES		
11		
SINCRÓNICA	ASINCRÓNICA	
11		

9.1. Días y horarios tentativos de dictado

Días	Horarios
Martes	19 a 21
Jueves	19 a 21

10. REQUISITOS MÍNIMOS DE INSCRIPCIÓN

Ninguno	guno	no				
---------	------	----	--	--	--	--

